Bioactive Constituents from Boswellia papyrifera

Atta-ur-Rahman, ${ }^{\dagger}$ Humera Naz, ${ }^{\dagger}$ Fadimatou,${ }^{\ddagger}$ Talat Makhmoor, ${ }^{\dagger}$ Amsha Yasin,${ }^{\dagger}$ Naheed Fatima, ${ }^{\dagger}$ F. N. Ngounou, ${ }^{\ddagger}$ S. F. Kimbu, ${ }^{\ddagger}$ B. L. Sondengam, ${ }^{\ddagger}$ and M. Iqbal Choudhary*, \dagger
H. E. J. Research Institute of Chemistry, International Center for Chemical Sciences, University of Karachi, Karachi-75270, Pakistan, and Department of Organic Chemistry, University of Yaounde 1, P.O. Box 812, Yaounde, Cameroon

Received June 22, 2004

Abstract

Phytochemical investigation of the stem bark extract of Boswellia papyrifera afforded two new stilbene glycosides, trans-4',5-dihydroxy-3-methoxystilbene-5-O-\{ α-L-rhamnopyranosyl-($1 \rightarrow 2$)-[α-L-rhamnopyran-osyl-($1 \rightarrow 6$)]- β-D-glucopyranoside ($\mathbf{1}$), trans-4', 5 -dihydroxy- 3 -methoxystilbene-5- O-[α-L-rhamnopyranosyl$(1 \rightarrow 6)]-\beta$-D-glucopyranoside (2), and a new triterpene, 3α-acetoxy-27-hydroxylup-20(29)-en-24-oic acid (3), along with five known compounds, 11 -keto- β-boswellic acid (4), β-elemonic acid (7), 3α-acetoxy-11-keto-β-boswellic acid (8), β-boswellic acid (9), and β-sitosterol (10). The stilbene glycosides exhibited significant inhibition of phosphodiesterase I and xanthine oxidase. The triterpenes (3-9) exhibited prolyl endopeptidase inhibitory activities.

The genus Boswellia (Burseraceae), consisting of 10 species of trees and shrubs, is distributed in the tropical parts of Asia and Africa. ${ }^{1}$ Boswellia papyrifera (Del.) Hochst. is a deciduous, gum-producing, multipurpose perennial tree that grows in Sudanian and Sahelian regions. The tree is tapped on the stem for a kind of oleo-gum called "olibanum" (true frankincense). This gum resin is used in medicinal preparations for the treatment of amenorrhoea, menorrhagia, polyuria, rheumatism, ulcers, scrofulous affections, syphilis, sores, and nervous diseases. It is also used in diarrhea, asthma, and bronchitis. ${ }^{2}$ The Boswellia plants are known to contain several acidic triterpenes, some of which show analgesic, immunosuppressant, antileukemic, hepatoprotective, and anti-inflammatory activities. Most of these activities are based on the inhibition of the enzyme 5-lipoxygenase. ${ }^{3}$ Acetyl-11-keto- β-boswellic acid, a compound isolated from Boswellia serrata, exerts cytotoxic effects in in vitro human glioblastoma and leukemia cell lines. ${ }^{4}$ Boswellic acids decrease the formation of leukotriene B_{4} from endogenous arachidonic acid in rat peritoneal neutrophils in a dose-dependent manner with IC_{50} values from 1.5 to $7 \mu \mathrm{M}$ and also inhibit the leukotriene synthesis via the inhibition of 5-lipoxygenase. ${ }^{5}$

Xanthine oxidase catalyzes the oxidative hydroxylation of hypoxanthine or xanthine using oxygen as a cofactor, and the resulting end products are superoxide anion $\left(\mathrm{O}_{2}{ }^{\circ-}\right)$ and uric acid. The inhibitors of xanthine oxidase enzyme can prevent the generation of excess superoxide anions. ${ }^{6}$

Phosphodiesterase I successively hydrolyzes 5'-mononucleotides from 3'-hydroxyl-terminated ribo- and deoxy-ribo-oligonucleotides. The enzyme has been widely utilized as a tool for structural and sequential studies of nucleic acids. The 5^{\prime}-nucleotide phosphodiesterase isozyme-V test is useful in detecting liver metastatis in breast, gastrointestinal, lung, and various other forms of cancers. ${ }^{7}$

Prolyl endopeptidase catalyzes the hydrolysis of peptide bonds at the L-proline carboxy terminal and thus plays an important role in the biological regulation of prolinecontaining neuropeptides and peptide hormones, which are recognized to be involved in learning and memory. ${ }^{8}$

[^0]
Results and Discussion

The MeOH extract of the stem bark of B. papyrifera was partitioned into hexane-, $\mathrm{CHCl}_{3^{-}}$, EtOAc -, and $\mathrm{H}_{2} \mathrm{O}$-soluble fractions. The $\mathrm{H}_{2} \mathrm{O}$-soluble extract was subjected to vacuum liquid chromatography (VLC, silica gel) and then column chromatography (Sephadex LH-20, silica gel) to obtain two new stilbenes, $\mathbf{1}$ and 2.

The positive-ion HRFABMS of $\mathbf{1}$ exhibited the molecular ion at $\mathrm{m} / \mathrm{z} 697.2719[\mathrm{M}+\mathrm{H}]^{+}$, corresponding to the formula $\mathrm{C}_{33} \mathrm{H}_{44} \mathrm{O}_{16}$, which indicated 12 degrees of unsaturation. The fragment ions at $m / z 551,389$, and 243 indicated the presence of one hexose and two deoxyhexose moieties. The presence of three sugars in $\mathbf{1}$ was also deduced from the negative-ion FABMS.

The UV spectrum of $\mathbf{1}$ exhibited absorptions at 320, 306, and 218 nm , which indicated the presence of a conjugated aromatic system. ${ }^{9}$ The ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) spectrum showed the presence of three anomeric protons, resonating at $\delta 4.71(\mathrm{~s}), 4.94(\mathrm{~d}, J=7.4 \mathrm{~Hz})$, and $5.28(\mathrm{~s})$, in addition to the signals for a 1 -, 3 -, 5 -trisubstituted aromatic ring at $\delta 6.42(\mathrm{br} \mathrm{s}), 6.62(\mathrm{br} \mathrm{s})$, and $6.69(\mathrm{br} \mathrm{s})$, one methoxy group at $\delta 3.79$ (s), a para-disubstituted aromatic ring at $\delta 7.44(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz})$ and $6.89(2 \mathrm{H}$, $\mathrm{d}, J=8.5 \mathrm{~Hz}$), and two olefinic protons at $\delta 7.04(\mathrm{~d}, J=$ $16.0 \mathrm{~Hz})$ and $6.85(\mathrm{~d}, J=16.0 \mathrm{~Hz}) .{ }^{10}$ The large coupling constant (16.0 Hz) indicated the presence of trans-olefinic coupling. These observations suggested that the compound could be a trans-stilbene. ${ }^{11}$ The ${ }^{13} \mathrm{C}$ NMR spectrum exhibited three anomeric carbon signals at $\delta 100.5,102.1$, and 102.4. The presence of a downfield signal at $\delta 79.1$ and a downfield CH_{2} signal at $\delta 67.5$ in the ${ }^{13} \mathrm{C}$ NMR spectrum indicated the attachment of α-L-rhamnose moieties at C-2" and C- $6^{\prime \prime}$ of β-D-glucose. The presence of two methyl doublets in compound $\mathbf{1}$ was attributed to the presence of two rhamnopyranosyl units.

The anomeric proton at $\delta 4.94$ (H-1") showed HMBC interaction with $\delta 159.5$ (C-5), indicating the attachment of β-D-glucose at C-5. The anomeric proton of the rhamnose moiety at $\delta 5.28$ ($\mathrm{H}-1^{\prime \prime \prime \prime}$) exhibited long-range correlation with C-2" of the glucose moiety at $\delta 79.1$, while the anomeric proton at $\delta 4.71$ (H-1"') showed HMBC correlation with C-6" of the glucose moiety at $\delta 67.5$. The positions of the sugar residues were further deduced by 1-D TOCSY and HMBC experiments and by acid hydrolysis. Acid hydrolysis afforded aglycone, D-glucose, and L-rhamnose (1:

Table 1. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Assignments of Compounds 1 and 2 in $\mathrm{CD}_{3} \mathrm{OD}^{a}$

position	1			2		
	$\delta(\mathbf{C)}$	$\delta(\mathrm{H})$	$(\mathrm{HMBC})(\mathrm{H} \rightarrow \mathrm{C})$	$\delta(\mathrm{C})$	$\delta(\mathrm{H})$	$(\mathrm{HMBC})(\mathrm{H} \rightarrow \mathrm{C})$
1	141.9 (C)			141.2 (C)		
2	107.2 (CH)	6.69 (br s)	$3,4,6, \alpha$	$107.8(\mathrm{CH})$	6.72 (br s)	$3,4,6, \alpha$
3	160.3 (C)			160.3 (C)		
4	103.8 (CH)	6.42 (br s)	2, 3, 6	104.3 (CH)	6.41 (br s)	3, 5, 6
5	159.5 (C)			159.5 (C)		
6	108.3 (CH)	6.62 (br s)	$2,4,5, \alpha$	108.3 (CH)	6.65 (br s)	$2,4,5, \alpha$
7	$55.7\left(\mathrm{CH}_{3}\right)$	3.79 (s)	3	$55.7\left(\mathrm{CH}_{3}\right)$	3.79 (s)	3
1^{\prime}	131.7 (C)			131.7 (C)		
2^{\prime}	128.8 (CH)	7.44 (d, $J=8.5 \mathrm{~Hz})$	$3^{\prime}, \beta$	128.8 (CH)	7.44 (d, $J=8.5 \mathrm{~Hz})$	$3^{\prime}, \beta$
3^{\prime}	115.1 (CH)	$6.89(\mathrm{~d}, J=8.5 \mathrm{~Hz})$	$1^{\prime}, 4^{\prime}$	115.1 (CH)	$6.88(\mathrm{~d}, J=8.5 \mathrm{~Hz})$	$1^{\prime}, 4^{\prime}$
4^{\prime}	160.9 (C)			160.9 (C)		
$5{ }^{\prime}$	115.1 (CH)	6.89 (d, $J=8.5 \mathrm{~Hz})$	$1^{\prime}, 4^{\prime}$	115.1 (CH)	6.88 (d, $J=8.5 \mathrm{~Hz})$	$1^{\prime}, 4^{\prime}$
6^{\prime}	128.8 (CH)	7.44 (d, $J=8.5 \mathrm{~Hz})$	$3^{\prime}, \beta$	128.8 (CH)	$7.44(\mathrm{~d}, ~ J=8.5 \mathrm{~Hz})$	$3^{\prime}, \beta$
α	127.4 (CH)	6.85 (d, $J=16.0 \mathrm{~Hz})$	6, $\beta, 1^{\prime}$	127.4 (CH)	6.85 (d, $J=16.2 \mathrm{~Hz}$)	1, 2, β
β	129.7 (CH)	$7.04(\mathrm{~d}, J=16.0 \mathrm{~Hz})$	$1,2^{\prime}, \alpha$	129.7 (CH)	6.99 (d, $J=16.2 \mathrm{~Hz})$	$1,2^{\prime}, \alpha$
$1^{\prime \prime}$	100.5 (CH)	$4.94(\mathrm{~d}, J=7.4 \mathrm{~Hz})$	5	102.3 (CH)	4.86 (d, $J=7.02 \mathrm{~Hz})$	5, $2^{\prime \prime}$
$2^{\prime \prime}$	79.1 (CH)	3.63	$1^{\prime \prime}, 4^{\prime \prime}$	74.9 (CH)	3.46	
$3^{\prime \prime}$	79.0 (CH)	3.56		77.9 (CH)	3.41	
$4 \prime$	72.2 (CH)	3.43		72.3 (CH)	3.70	
5"	76.7 (CH)	3.53		76.9 (CH)	3.55	4"
6 "	$67.5\left(\mathrm{CH}_{2}\right)$	3.97, 4.01	$1^{\prime \prime \prime}$	$67.6\left(\mathrm{CH}_{2}\right)$	3.64, 4.02	$1^{\prime \prime \prime}$
$1^{\prime \prime \prime}$	102.1 (CH)	4.71 (s)	$2^{\prime \prime \prime}, 5^{\prime \prime \prime}, 6^{\prime \prime}$	102.1 (CH)	4.72 (s)	$2^{\prime \prime \prime}, 5^{\prime \prime \prime}, 6^{\prime \prime}$
$2^{\prime \prime \prime}$	72.2 (CH)	3.86		72.1 (CH)	3.85	
$3^{\prime \prime \prime}$	72.1 (CH)	3.68		71.3 (CH)	3.47	
$4^{\prime \prime \prime}$	74.0 (CH)	3.34		74.1 (CH)	3.39	
$5^{\prime \prime \prime}$	69.8 (CH)	3.65		69.8 (CH)	3.65	
$6^{\prime \prime \prime}$	$17.9\left(\mathrm{CH}_{3}\right)$	1.17 (d, $J=6.1 \mathrm{~Hz})$	$5^{\prime \prime \prime}$	$17.9\left(\mathrm{CH}_{3}\right)$	$1.18(\mathrm{~d}, J=6.1 \mathrm{~Hz})$	$4^{\prime \prime \prime}, 5^{\prime \prime \prime}$
$1^{\prime \prime \prime \prime \prime}$	102.4 (CH)	5.28 (s)	$2^{\prime \prime}, 2^{\prime \prime \prime \prime}, 5^{\prime \prime \prime}$			
$2^{\prime \prime \prime \prime}$	72.3 (CH)	3.94				
$3^{\prime \prime \prime \prime}$	$71.4(\mathrm{CH})$	3.62				
$4^{\prime \prime \prime \prime}$	74.1 (CH)	3.43				
$5^{\prime \prime \prime \prime}$	$69.9(\mathrm{CH})$	4.08				
$6^{\prime \prime \prime \prime}$	$18.2\left(\mathrm{CH}_{3}\right)$	1.32 (d, $J=6.1 \mathrm{~Hz})$	$5^{\prime \prime \prime}$			

${ }^{a}{ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR recorded at 400 and 100 MHz , respectively.
2), which were identified by comparative TLC with standard sugars using the solvent system $\mathrm{BuOH} / \mathrm{EtOAc} / 2-$ propanol/ $\mathrm{HOAc} / \mathrm{H}_{2} \mathrm{O}$ (7:20:12:7:6). On the basis of the above spectroscopic studies, the structure of compound 1 was determined as trans-4',5-dihydroxy-3-methoxystilbene-5-O-\{ α-L-rhamnopyranosyl-($1 \rightarrow 2$)-[α-L-rhamnopyranosyl$(1 \rightarrow 6)]-\beta$-D-glucopyranoside.

Compound 2 was isolated as a light brown gummy material. The spectroscopic data of compound 2 were similar to that of 1 except one rhamnose, which was absent in $\mathbf{2}$ at the C-2" position. The positive-ion HRFABMS of $\mathbf{2}$ exhibited the molecular ion at $m / z 551.2140\left(\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{O}_{12}\right)$, which indicated 11 degrees of unsaturation. The fragment ions at $\mathrm{m} / \mathrm{z} 405$ and 243 indicated the presence of two sugar units, hexose and a deoxyhexose.

The UV spectrum of 2 exhibited absorptions at 318, 304, and 216 nm . The ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of 2, in addition to other signals, showed two anomeric protons at $\delta 4.72$ (s) and $4.86(\mathrm{~d}, J=7.0 \mathrm{~Hz})$ and a methyl doublet at $\delta 1.18(J=6.1 \mathrm{~Hz})$, suggesting the presence of two sugars, α-L-rhamnopyranose and β-D-glucopyranose. In the ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right)$, the anomeric carbon atoms appeared at $\delta 102.1$ and 102.3. The anomeric proton at $\delta 4.86$ (corresponding to $\delta_{\mathrm{C}} 102.3$) showed a coupling constant of 7.0 Hz , indicating the presence of a β-D-glucosidic linkage. ${ }^{12}$ The positions of the sugar residues were further deduced by 1-D TOCSY and HMBC experiments and by acid hydrolysis. Acid hydrolysis afforded aglycone, D-glucose, and L-rhamnose (1:1), which were identified by comparative TLC with standard sugars using

$1 \quad \mathrm{R}=\alpha-$ - - Rhamnose
$2 \quad R=H$

Table 2. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Assignments of Compound 3 in $\mathrm{CD}_{3} \mathrm{OD}^{a}$

position	$\delta(\mathrm{C})$	$\delta(\mathrm{H})$	$\underset{(\mathrm{H} \rightarrow \mathrm{C})}{(\mathrm{HMBC})}$
1	$33.6\left(\mathrm{CH}_{2}\right)$		
2	$25.7\left(\mathrm{CH}_{2}\right)$		
3	73.9 (CH)	5.23 (br s)	24, 5, 31
4	37.3 (C)		
5	47.5 (CH)	1.46	3
6	$19.3\left(\mathrm{CH}_{2}\right)$		
7	$33.8\left(\mathrm{CH}_{2}\right)$		
8	42.5 (C)		
9	49.4 (CH)		
10	40.6 (C)		
11	$20.7\left(\mathrm{CH}_{2}\right)$		
12	$26.7\left(\mathrm{CH}_{2}\right)$		
13	37.0 (CH)		
14	46.3 (C)		
15	$29.4\left(\mathrm{CH}_{2}\right)$		
16	$34.2\left(\mathrm{CH}_{2}\right)$		
17	46.3 (C)		
18	$50.1(\mathrm{CH})$	1.71 (d, $J=11.2 \mathrm{~Hz})$	
19	48.9 (CH)	1.65 (d, $J=11.2 \mathrm{~Hz})$	
20	150.3 (C)		
21	$28.9\left(\mathrm{CH}_{2}\right)$		
22	$37.0\left(\mathrm{CH}_{2}\right)$		
23	$23.4\left(\mathrm{CH}_{3}\right)$	1.09 (s, 3H)	3, 5, 24
24	178.5 (C)		
25	$14.5\left(\mathrm{CH}_{3}\right)$	1.15 (s, 3H)	
26	$15.5\left(\mathrm{CH}_{3}\right)$	1.03 (s, 3H)	8, 10
27	$59.6\left(\mathrm{CH}_{2}\right)$	$\begin{aligned} & 3.72(1 \mathrm{H}, \mathrm{~d}, J=11.1 \mathrm{~Hz}, 27 \mathrm{a}) \\ & 3.29(1 \mathrm{H}, \mathrm{~d}, J=11.1 \mathrm{~Hz}, 27 \mathrm{~b}) \end{aligned}$	14
28	$13.0\left(\mathrm{CH}_{3}\right)$	0.79 (s, 3H)	16, 18, 22
29	$109.2\left(\mathrm{CH}_{2}\right)$	$\begin{aligned} & 4.67(1 \mathrm{H}, \mathrm{~d}, J=2.0 \mathrm{~Hz}, 29 \mathrm{a}) \\ & 4.56(1 \mathrm{H}, \mathrm{~d}, J=2.0 \mathrm{~Hz}, 29 \mathrm{~b}) \end{aligned}$	
30	$18.7\left(\mathrm{CH}_{3}\right)$	1.68 (s, 3H)	19, 20, 29
31	170.9 (C)		
32	$21.0\left(\mathrm{CH}_{3}\right)$	2.01 (s, 3H)	
${ }^{a}{ }^{1} \mathrm{H}$ respectiv	VMR and ${ }^{13} \mathrm{C}$ ely.	NMR recorded at 500 and	$125 \mathrm{MHz},$

the solvent system $\mathrm{BuOH} / \mathrm{EtOAc} / 2$-propanol/ $\mathrm{HOAc} / \mathrm{H}_{2} \mathrm{O}$ (7: 20:12:7:6). The cross-peak due to long-range correlations between C-5 ($\delta 159.5$) of the aglycone and $\mathrm{H}-1^{\prime \prime}$ of β-glucose ($\delta 4.86$) indicated that the glucose residue was linked to $\mathrm{C}-5$ of the aglycone, while the downfield CH_{2} signal at δ 67.6 in the ${ }^{13} \mathrm{C}$ NMR spectrum indicated the attachment of the α-L-rhamnose moiety with C- 6 " of β-D-glucose unit. On the basis of these spectroscopic studies, the structure of compound 2 was determined to be trans-4',5-dihydroxy3 -methoxystilbene-5-O-[α-L-rhamnopyranosyl-($1 \rightarrow 6$)]- β-Dglucopyranoside.

Compound $\mathbf{3}$ was obtained as a white amorphous powder with IR absorptions at 1721 and $3474 \mathrm{~cm}^{-1}$, indicating the presence of carbonyl and hydroxyl groups, respectively. The molecular formula of compound 3 was deduced as $\mathrm{C}_{32} \mathrm{H}_{50} \mathrm{O}_{5}$ ($\mathrm{m} / \mathrm{z} 514.3721$ in HREIMS) with eight degrees of unsaturation. The ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3}$ revealed 32 carbon signals, which were deduced by DEPT ${ }^{13} \mathrm{C}$ NMR as six methyls, 10 methylenes, five methines, five quaternary carbons, one acetoxy methine, one secondary alcohol, one carboxylic acid, one acetoxy group, and two olefinic carbons (one methylene and one quaternary carbon). ${ }^{13}$ The detailed analysis of the ${ }^{1} \mathrm{H}$ NMR spectrum showed the presence of a lup-20(29)-ene parent skeleton. The tertiary methyls appeared at $\delta 1.15,1.09,1.03$, and 0.79 (3 H each, $\mathrm{s}, \mathrm{CH}_{3}-$ $25, \mathrm{CH}_{3}-23, \mathrm{CH}_{3}-26, \mathrm{CH}_{3}-28$, respectively), one vinylic methyl at $\delta 1.68\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-30\right)$, one acetoxy methyl at δ $2.01\left(\mathrm{COCH}_{3}\right)$, two protons of an isoprenyl moiety at $\delta 4.67$ and 4.56 (1 H each, d, $J=2.0 \mathrm{~Hz}, \mathrm{H}-29 \mathrm{a}$ and $\mathrm{H}-29 \mathrm{~b}$), one carbinol proton at $\delta 5.23(1 \mathrm{H}$, br s, H-3), two protons of a primary alcohol at $\delta 3.72$ and 3.29 (1 H each, $\mathrm{d}, ~ J=11.1$

Table 3. In Vitro Free Radical Scavenging and Xanthine Oxidase and Phosphodiesterase I Inhibitory Activities of Compounds 1 and 2

	$\mathrm{IC}_{50}(\mu \mathrm{M})^{a}$		
compound	DPPH scavenging activity	XO inhibition activity	phosphodiesterase I inhibition activity
$\mathbf{1}$		178 ± 4.62	992 ± 17.00
$\mathbf{2}$		129 ± 3	589 ± 17.00
PG^{b}	30 ± 0.27	628 ± 5.0	
BHA b	44 ± 2.00	591 ± 8.0	
allopurinol			
cystein d		7.45 ± 0.17	
EDTA d			748 ± 15.00

[^1]$\mathrm{Hz}, \mathrm{H}-27 \mathrm{a}$ and $\mathrm{H}-27 \mathrm{~b}$), and a lupenyl $\mathrm{H}-19_{\beta}$ proton at δ $1.65(1 \mathrm{H}, \mathrm{d}, J=11.2 \mathrm{~Hz}$). The equatorial disposition (β orientation) of H-3 was deduced from $W_{1 / 2}=8.0 \mathrm{~Hz}$ and also by the absence of interaction between $\mathrm{H}-3$ and $\mathrm{H}-5$ in the NOESY experiment. In the HMBC experiment, the oxymethine proton at $\delta 5.23(\mathrm{H}-3)$ showed ${ }^{3} J_{\mathrm{CH}}$ correlations with C-5 ($\delta 47.5$), C-24 ($\delta 178.5$), and C-31 ($\delta 170.9$), while the alcoholic methine carbon at $\delta 73.9$ showed ${ }^{3} J_{\text {CH }}$ interactions with H-5 ($\delta 1.46$) and H-23 ($\delta 1.09$), supporting the presence of an equatorial $\mathrm{H}-3$. The location of the carboxylic group ${ }^{14}$ at C-24 was deduced by HMBC interactions, and the carboxylic carbon signal at $\delta 178.5$ showed ${ }^{3} J_{\mathrm{CH}}$ interactions with H-3 ($\delta 5.23$), H-23 ($\delta 1.09$), and H-5 (δ 1.46). The position of the C-27 hydroxyl group was established from the HMBC spectrum, in which the H-27b proton at $\delta 3.29$ showed ${ }^{2} J_{\mathrm{CH}}$ correlation with C-14 ($\delta 46.3$), while the C-28 methyl protons at $\delta 0.79$ showed ${ }^{3} J_{\mathrm{CH}}$ correlations with C-18 ($\delta 50.1$). These correlations were in agreement with the proposed structure 3 . The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR chemical shift assignments of compound $\mathbf{3}$ are based on the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$-COSY, HMQC, and HMBC spectra. The structure was therefore assigned as 3α-acetoxy-27-hy-droxylup-20(29)-en-24-oic acid.

Compounds 1 and 2, by virtue of their phenolic nature, were tested for antioxidant activities in a battery of assays. They were inactive in a DPPH radical scavenging assay, but significantly inhibited the xanthine oxidase enzyme (EC 1.1.3.22) with IC_{50} values of 178 and $129 \mu \mathrm{M}$, respectively. The results are presented in Table 3.

Compounds 1 and 2 were screened against phosphodiesterase I (EC 3.1.4.1) enzyme with varying degrees of activity (Table 3). The results showed that compound 2 is more active than $\mathbf{1}$, with IC_{50} values of 589 (compound 2) and $992 \mu \mathrm{M}$ (compound $\mathbf{1}$), respectively.

Compounds 3-9 were screened against PEP (EC 3.4.21.26). Their IC_{50} values are shown in Table 4 along with the positive control (bacitracin). Among the known constituents, compounds 4,8 , and 9 have been reported as potential inhibitors of lipoxygenase enzyme. ${ }^{15}$ These compounds have also been reported as inhibitors of growth of human leukemia in HL-60 cells, and DNA, RNA, and protein synthesis in HL-60 cells. ${ }^{5}$ We report here, for the first time, the PEP inhibitory activity of different compounds isolated from B. papyrifera. Among the compounds $\mathbf{4}, \mathbf{5}, \mathbf{7}, \mathbf{8}$, and $\mathbf{9}$, compound 8 (3α-acetoxy- 11 -keto- β boswellic acid) showed the maximum inhibitory potential against prolyl endopeptidase (PEP) enzyme, as indicated by the lower IC_{50} value of $7.89 \mu \mathrm{M}$. When the activities of these compounds were compared with their structures, it

Table 4. In Vitro Quantitative Inhibition of Prolyl Endopeptidase

compound	$\mathrm{IC}_{50}(\mu \mathrm{M})^{a}$
trans- $4^{\prime}, 5$-dihydroxy-3-methoxystilbene-5- O -	NA
\{ α-L-rhamnopyranosyl-(1 $\rightarrow 2)$ - α-L-rhamno-	
pyranosyl-(1 $\rightarrow 6)$]- β-D-glucopyranoside (1)	
trans-4',5-dihydroxy-3-methoxystilbene-	NA
5- O-[α-L-rhamnopyranosyl-(1 $\rightarrow 6)]-\beta$-D-	
glucopyranoside (2)	
3 α-acetoxy-27-hydroxylup-20(29)-en-24-oic	2.866 ± 0.064
acid (3)	
11-keto- β-boswellic acid (4)	36.32 ± 0.772
methyl 3 α-acetoxy-27-hydroxylup-20(29)-	57.43 ± 4.01
en-24-oate (5)	
methyl ester of 11-keto- β-boswellic acid (6)	114.75 ± 5.14
β-elemonic acid (7)	39.74 ± 1.614
3 α-acetoxy-11-keto- β-boswellic acid (8)	7.89 ± 0.02
β-boswellic acid $(\mathbf{9})$	9.75 ± 0.521
bacitracin ${ }^{b}$	129.26 ± 3.28

${ }^{a} \mathrm{IC}_{50}$ values are the mean \pm standard mean error of three assays. ${ }^{b}$ Standard compound for prolyl endopeptidase (PEP) inhibitory activity.
was found that the substituent at C-3, C-11, and C-24 might play an important role, as β-boswellic acid (9) showed a lower IC_{50} value $(9.75 \mu \mathrm{M})$ as compared to 11 -keto- β boswellic acid (4) $\left(\mathrm{IC}_{50}=36.32 \mu \mathrm{M}\right)$. Acetylation of 11-keto-β-boswellic acid (8) enhanced the activity ($\mathrm{IC}_{50}=7.89 \mu \mathrm{M}$), while methylation of 11-keto- β-boswellic acid (6) decreased the activity $\left(\mathrm{IC}_{50}=114.75 \mu \mathrm{M}\right)$. Compound 7, which belongs to a tetracylic triterpene class, showed low inhibitory

$3 \mathrm{R}=\mathrm{H} \quad 3 \alpha$-Acetoxy-27-hydroxylup-20(29)-ene-24-oic acid
$5 \mathrm{R}=\mathrm{CH}_{3}$ Methyl 3α-acetoxy-27-hydroxylup-20(29)-ene-24-oate

	R^{1}	R^{2}	R^{3}	
$\mathbf{4}$	H	O	H	11-Keto- β-boswellic acid
$\mathbf{6}$	H	O	CH_{3}	Methyl ester of 11 -keto- β-boswellic acid
$\mathbf{8}$	-COCH3	O	H	3α-Acetoxy-11-keto- β-boswellic acid
$\mathbf{9}$	H	H_{2}	H	β-Boswellic acid

activity $\left(\mathrm{IC}_{50}=39.74 \mu \mathrm{M}\right)$ as compared to β-boswellic acid (9), which does not have a free carboxyl group at the C-24 position.

The new compound $\mathbf{3}$, a lupane-type triterpene, was the most active PEP inhibitor among the tested compounds 4, $\mathbf{5}, \mathbf{6}, \mathbf{7}, \mathbf{8}$, and $\mathbf{9}$, as indicated by its low IC_{50} value (2.86 $\mu \mathrm{M})$.

Experimental Section

General Experimental Procedures. Melting points were measured on a YANACO apparatus. Optical rotations were measured on Schmidt + Haensch Polartronic D. UV and IR spectra were recorded on Hitachi UV 3200 and JASCO 302-A spectrophotometers. The ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$-COSY, TOCSY, HMQC, and HMBC spectra were recorded on Bruker AMX 400 and AMX 500 MHz NMR spectrometers; chemical shifts are in ppm (δ) relative to SiMe_{4} as internal standard and coupling constants are in Hz. EI and HREI MS were measured on Varian MAT 311A and JEOL HX 110 mass spectrometers (m / z, rel int \%). Column chromatography (CC) was carried out on silica gel ($70-230$ mesh). Thin-layer chromatography (TLC) was performed on precoated silica gel plates (DC-Alufolien $60 \mathrm{~F}_{254}$ of E. Merck), and spots were detected at 254 and 366 nm , by using ceric sulfate spraying reagent.

Plant Material. Stem barks of B. papyrifera (Del.) Hochst. were collected in December 1998 and identified by Dr. Achoundong from Garoua, Benove Region, Cameroon. A voucher specimen (\#64941/HNC) was deposited at the National Herbarium (Yaounde, Cameroon).

Extraction and Isolation. The air-dried and pulverized stem barks of B. papyrifera (1.5 kg) were soaked in MeOH (7 days), and then the concentrated MeOH extract was partitioned with n-hexane, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and EtOAc. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extract (22.29 gm) was subjected to vacuum liquid chromatography (VLC) (silica gel, 400 gm) using a gradient solvent system of n-hexane/EtOAc and $\mathrm{EtOAc} / \mathrm{MeOH}$, to give nine subfractions $\left(\mathrm{F}_{1}-\mathrm{F}_{9}\right)$. Fraction F_{1} (n-hexane/EtOAc, 19:1, 4.19 g) after repeated column chromatography (silica gel, eluent n-hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) yielded β-sitosterol (10.2 mg) and β-elemonic acid ${ }^{16}$ (7) (56.3 mg). Fraction F_{3} (n-hexane/EtOAc, $4: 1,832 \mathrm{mg}$) was first subjected to column chromatography (silica gel, eluent n-hexane/EtOAc, 3:17) and then to thin-layer chromatography (silica gel, $\mathrm{MeOH} / \mathrm{CHCl}_{3} / n$-hexane, 1:6:13) to obtain β-boswellic acid (9) (13.2 mg) and 3α-acetoxy-11-keto- β-boswellic acid ${ }^{17}$ (8) (5.4 mg). Fraction F_{4} (n-hexane/EtOAc, 1:1, 2.2 gm) was first subjected to column chromatography on Sephadex LH-20 (50 gm) using $\mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH}$ as eluent and then to thin-layer chromatography (silica gel, eluent acetone $/ n$-hexane, $1: 4,466 \mathrm{mg}$) to yield 3α-acetoxy-27-hydroxylup-20(29)-en-24-oic acid (3) $(16.7 \mathrm{mg})$ and 11 -keto- β-boswellic acid (4) (10.4 mg).

The MeOH extract (342.7 gm) was subjected to VLC (gradient $\mathrm{CHCl}_{3} / \mathrm{MeOH}$), yielding four fractions $\left(\mathrm{F}_{1}-\mathrm{F}_{4}\right)$. Fraction $\mathrm{F}_{3}\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}, 11: 9,76.45 \mathrm{gm}\right)$ was first subjected to VLC (gradient $\mathrm{CHCl}_{3} / \mathrm{MeOH}$) and then to repeated column chromatography on Sephadex LH-20 $\left(\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}, 1: 9\right)$ and silica gel ($\mathrm{CHCl}_{3} / \mathrm{MeOH}, 17: 3$), yielding two pure compounds, $1(36 \mathrm{mg})$ and $2(137.1 \mathrm{mg})$.

Compound 1: white crystalline solid; $\mathrm{mp} 166-170{ }^{\circ} \mathrm{C} ;[\alpha]^{25}{ }_{\mathrm{D}}$ -94.9° (с 0.11, MeOH); UV (MeOH) $\lambda_{\text {max }}(\log \epsilon) 320$ (4.49), 306 (4.49), 218 (4.42) nm; IR (KBr) $\nu_{\text {max }} 3358,1602,715 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}$), see Table $1 ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}, 100$ MHz), see Table 1; FABMS (pos.) m/z $551(\mathrm{M}+\mathrm{H}-146)^{+}$, $389(\mathrm{M}+\mathrm{H}-146-162)^{+}, 243(\mathrm{M}+\mathrm{H}-146-162-146)^{+}$; HRFABMS (pos.) m/z $697.2719[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{33} \mathrm{H}_{44} \mathrm{O}_{16}$, 697.2708).

Compound 2: light brown gummy material; $[\alpha]^{25}{ }_{\mathrm{D}}-89.8^{\circ}$ (c $0.13, \mathrm{MeOH})$; UV (MeOH) $\lambda_{\text {max }}(\log \epsilon) 318$ (4.33), 304 (4.35), 216 (4.37) nm; IR (KBr) $v_{\max } 3389,1600,1512,1449 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}$), see Table $1 ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 100\right.$ MHz), see Table 1; FABMS (pos.) m/z $405(\mathrm{M}+\mathrm{H}-146)^{+}$, $243(\mathrm{M}+\mathrm{H}-162-146)^{+}$; HRFABMS (pos.) $\mathrm{m} / \mathrm{z} 551.2140$ $[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{O}_{12}$, 551.2128).
Hydrolysis of Compounds 1 and 2. Compounds 1 and 2 (each 15 mg) were dissolved in $\mathrm{MeOH}(10 \mathrm{~mL})$ and 5 N HCl $(10 \mathrm{~mL})$. The mixtures were refluxed for 3 h . The solutions were neutralized with NaOH and extracted with EtOAc. The sugars in aqueous phase were identified as glucose and rhamnose by comparative TLC with standard sugars using the solvent system $\mathrm{BuOH} / \mathrm{EtOAc} / 2$-propanol/HOAc/ $\mathrm{H}_{2} \mathrm{O}(7: 20: 12$: 7:6).

Compound 3: white amorphous powder; $[\alpha]^{27} \mathrm{D}+24.2^{\circ}(c$ $0.066, \mathrm{MeOH}) ; \mathrm{UV}(\mathrm{MeOH}) \lambda_{\text {max }}(\log \epsilon) 204$ (3.98) nm; IR (KBr) $\nu_{\max } 1721,3474 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}$), see Table 2; ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}, 125 \mathrm{MHz}$), see Table 2; EIMS m/z 410 $\left[\mathrm{M}-\mathrm{CO}_{2}+\mathrm{CH}_{3} \mathrm{COOH}\right]+(5), 379\left[\mathrm{M}-\mathrm{CO}_{2}+\mathrm{CH}_{3} \mathrm{COOH}+\right.$ $\left.\mathrm{CH}_{2} \mathrm{OH}\right]^{+}$(8), 353 (2), 205 (7), 203 (27), 189 (38), 175 (69), 95 (100); HREIMS m/z 514.3721 (calcd for $\mathrm{C}_{32} \mathrm{H}_{50} \mathrm{O}_{5}, 514.3658$).

Esterification of Compound 3. A 10 mg sample of compound $\mathbf{3}$ was dissolved in 5 mL of MeOH and treated with freshly prepared diazomethane $\left(\mathrm{CH}_{2} \mathrm{~N}_{2}\right)$. After comparative TLC, the resulting product was dissolved in distilled $\mathrm{H}_{2} \mathrm{O}$ and extracted with CHCl_{3}. The CHCl_{3}-soluble extract was subjected to thin-layer chromatography (n-hexane/acetone, $90: 10$) to afford the methyl ester of compound 3.

Methyl 3 α-acetoxy-27-hydroxylup-20(29)-en-24-oate (5): white amorphous powder; IR $\left(\mathrm{CHCl}_{3}\right) \nu_{\max } 1735,3143 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 5.32(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-3), 4.65(\mathrm{~s}, 1 \mathrm{H}$, H-29a), 4.56 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-29 \mathrm{~b}$), 3.34 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$); HREIMS m/z 528.3801 (calcd for $\mathrm{C}_{33} \mathrm{H}_{52} \mathrm{O}_{5}, 528.3814$).

DPPH Radical Scavenging Assay. Compounds ($1000 \mu \mathrm{M}$) were reacted with DPPH radicals ($300 \mu \mathrm{M}$) at $37{ }^{\circ} \mathrm{C}$ for 30 min . The ratio of sample solution, prepared in DMSO to DPPH radical solution in EtOH was 5:95. The reaction was carried out in a 96 -well microtiter plate reader (Molecular Devices, Spectramax 340). Finally the absorbance was measured at 515 $\mathrm{nm} .{ }^{18}$

Xanthine Oxidase Inhibitory Assay. Xanthine oxidase (XO) (EC 1.1.3.22) inhibition activity was assayed in phosphate buffer ($0.1 \mathrm{M}, \mathrm{pH} 7.5,250 \mu \mathrm{~L}$) and XO (0.003 unit/well, $20 \mu \mathrm{~L}$), and the test sample in $10 \mu \mathrm{~L}$ of DMSO was diluted to the desired range of concentrations, mixed in a 96 -well microplate, and preincubated for 10 min at room temperature. The reaction was initiated by adding $20 \mu \mathrm{~L}$ of 0.1 mM xanthine. The uric acid formation was measured spectrophotometrically at 295 nm by using a microtiter plate reader (Molecular Devices, Spectramax 384). ${ }^{18}$

Phosphodiesterase I Inhibitory Assay. Activity against phosphodiesterase I (Sigma P 4631) (EC 3.1.4.1) was assayed by using the reported method ${ }^{19}$ with the following modifications: 33 mM tris- HCl buffer $\mathrm{pH} 8.8,30 \mathrm{mM} \mathrm{Mg}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}$.
$4 \mathrm{H}_{2} \mathrm{O}$ with $0.000742 \mathrm{U} /$ well final concentration using microtiter plate assay, and 0.33 mM bis(p-nitrophenyl) phosphate (Sigma N-3002) as a substrate. Cystein and EDTA (E. Merck) were used as positive controls ${ }^{20}\left(\mathrm{IC}_{50}=748 \pm 15.00\right.$ and 274 $\pm 7.00 \mu \mathrm{M}$, respectively). After 30 min of incubation, the enzyme activity was monitored spectrophotometrically at 37 ${ }^{\circ} \mathrm{C}$ on a microtiter plate reader (Spectra Max, Molecular Devices) by following the release of p-nitrophenyl phosphate at 410 nm . Assays were conducted in triplicate.

PEP Inhibitory Activity. Prolyl endopeptidase (EC 3.4.21.26) was purchased from Seikagaku Corporation (Tokyo, Japan). N-Benzyloxycarbonyl-Gly-Pro- p NA and bacitracin were purchased from BACHEM Fine Chemicals Co. and Sigma Co., Ltd., respectively. PEP inhibitory activities were measured by a method developed by Yoshimoto ${ }^{21}$ et al. and described in our previous publications. ${ }^{22}$

Acknowledgment. We are grateful to Mr. K. Yoshinaga and Mr. N. Miura of the Central Research Laboratories, Zeria Pharmaceutical Co., Ltd., Japan, for their helpful suggestions in the establishment of the PEP assay and the Cameroonian Government for a travel grant to one of us (Fadimatou).

References and Notes

(1) Ambasta, S. P. (Editor-in-Chief). The Wealth of India: Raw Material; Council of Scientific and Industrial Research: New Delhi, 1988; Vol. 2, p 203.
(2) Khan, U.; Aftab, S.; Muhammad, T. A. Indusyunic Medicine; B. C. C., \& T. Press: University of Karachi, Karachi, p 125.
(3) Ganzera M.; Khan, I. A. Planta Med. 2001, 67, 778-80.
(4) Park, Y. S.; Lee, J. H.; Bondar, J.; Harwalkar, J. A.; Safayhi, H.; Golubic, M. Planta Med. 2002, 68, 397-401.
(5) Shao, Y.; Ho, C. T.; Chin, C. K.; Badmaev, V.; Ma, W.; Huang, M. T. Planta Med. 1998, 64, 328-331.
(6) Chung, H. Y.; Baek, B. S.; Song, S. H.; Kim, M. S.; Huh, J. I.; Shim, K. H.; Kim, K. W.; Lee, K. H. Age 1997, 20, 127-140.
(7) Lei-Ijo, L. E.; Tsou, K. C.; Lo, K. W.; Lopez, C. G.; Balasegaram, M.; Ganesan, S. Cancer 1980, 45, 795-798.
(8) (a) Szeltner, Z.; Renner, V.; Polgar, L. Protein Sci. 2000, 9, 353-360. (b) Fan, W.; Tezuka, Y.; Ni, K. M.; Kadota, S. Chem. Pharm. Bull. 2001, 49, 396-401.
(9) Kashiwada, Y.; Nonaka, G. I.; Nishioka, I. Chem. Pharm. Bull. 1984, 32, 3501-3517.
(10) Xiao, K.; Xuan, L.; Xu, Y.; Bai, D. J. Nat. Prod. 2000, 63, 13731376.
(11) Gromova, A. S.; Tyukavkina, N. A.; Lutskii, V. I.; Kalabin, G. A.; Kushnarev, D. F. Khim. Prir. Soedin. 1975, 677 [Chem. Nat. Compd. (Engl. Transl.) 1975, 11, 715-718].
(12) Agrawal, P. K. Phytochemistry 1992, 31, 3307-3330.
(13) Lischewski. M.; TY, P. D.; Schmidt, J.; Preiss, A.; Phiet, H. V.; Adam, G. Phytochemistry 1984, 23, 1695-1697.
(14) Culioli, G.; Mathe, C.; Archier, P.; Vieillescazes, C. Phytochemistry 2003, 62, 537-541.
(15) Safayhi, H.; Mack, T.; Sabieraj, J.; Anazodo, M. I.; Subramanian, L. R.; Ammon, H. P. T. J. Pharmacol. Exp. Ther. 1992, 261, 1143-1146.
(16) Cotterrell, G. P.; Halsall, T. G.; Wriglesworth, M. J. J. Chem. Soc. (C) 1970, 739-743.
(17) Pardhy, R. S.; Bhattacharyya, S. C. Ind. J. Chem. 1978, 16B, 176178.
(18) Lee, S. K.; Zakaria, H.; Chung, H.; Luyengi, L.; Gamez, E. J. C.; Mehta, R. J.; Kinghorn, D.; Pezzuto, J. M. Comb. Chem. High Throughput Screening 1998, 1, 35-46.
(19) Mamillapalli, R.; Haimovitz, R.; Ohad, M.; Shinitzky, M. FEBS Lett. 1998, 436, 256-258.
(20) (a) Razzell, W. E. Methods in Enzymology; Acedemic Press: New York, 1963; Vol. VI, pp 236-242. (b) Razzell, W. E.; Khorana, H. G. J. Biol. Chem. 1959, 234, 2105-2113.
(21) Yoshimoto, T.; Walter, R.; Tsuru, D. J. Biol. Chem. 1980, 255, 47864792.
(22) Atta-ur-Rahman; Zareen, S.; Choudhary, M. I.; Ngounou, F. N.; Yasin, A.; Parvez, M. Tetrahedron Lett. 2002, 43, 6233-6236.

NP040142X

[^0]: * To whom correspondence should be addressed. Tel: (92-21) 9243224 Fax: (92-21) 9243190-91. E-mail: hej@cyber.net.pk.
 ${ }^{\dagger}$ H. E. J. Research Institute of Chemistry.
 * University of Yaounde 1.

[^1]: ${ }^{a} \mathrm{IC}_{50}$ values are the mean \pm standard mean (SEM) error of three assays. ${ }^{b}$ Standard compounds for DPPH scavenging activity. ${ }^{c}$ Standard inhibitor of xanthine oxidase. ${ }^{d}$ Standard compounds for phosphodiesterase I inhibitory activity.

